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Application of Volterra Series to the
Problem of Self-Oscillating Mixer

Siou Teck Chew, Student Member, IEEE, and Tatsuo Itoh, Fellow, IEEE

Abstract— A new approach to the nonlinear problem of self-
oscillating mixer has been investigated using Volterra series.
The circuit under consideration is first converted into a one-
port network. The input and coupling impedances of various
ports are represented by Volterra kernels generated by nonlinear
current method. Advantage of this approach is that the phase
relationships among signals are not required for the analysis.
Also, no stability criterion testing is needed to ensure convergence
to the correct solution numerically. It is computationally efficient
and mathematically simple, yet reasonably accurate. Measured
results with respect to RF frequency and power show good
agreemeni with that calculated.

I. INTRODUCTION

ELF-OSCILLATING MIXER (SOM) has been an inter-
esting problem in nonlinear circuit analysis. Being an
oscillator by nature, it is an autonomous system that finds its
own oscillation frequency, power level, and harmonic contents.
However, unlike a free-running oscillator, SOM functions as a
mixer in the presence of a RF signal. This RF signal influences
the oscillation properties and participates in the frequency
conversion with the oscillating signal to generate the IF signal.
There are numerous papers reported on the design of SOM.
However, they are mainly empirical and experimental in
nature, and involved with two-terminal devices [1]-[4]. The-
oretical prediction of the SOM for three-terminal devices
.is limited. An approximation of the SOM conversion gain
was made using closed-form equation derived from an active
MESFET mixer (not self-oscillating in nature) [2]. Kipnis
and Khanna have simulated a SOM using a BJT with the
time-domain large-signal method [5]. However, special con-
siderations for the time step and convergence of the numerical
method must be taken for high @ circuit. Rizzoli and Neri
applied harmonic balance method, using a Newton-iteration
based algorithm, to a FET SOM [6]. But, Jacobian matrix
must be computed and Fourier transform must be performed,
as required by generic harmonic balance technique. Endo
and Chua has proposed analysis of quasi-periodic oscillation
problem using Volterra series [7]. However, it is analytical in
nature.
Volterra series has been demonstrated to be an efficient
simulation tool for nonlinear circuits and systems [7]-[11]. It
is commented by [6] that the Volterra kernels are cumbersome
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to compute. Analytical derivations of these kernels are limited
to the first few orders, resulting in its incapability to deal with
strong nonlinearity. This also renders the method not suitable
for CAD.

In this paper, a new approach is proposed using Volterra
series to the SOM problem. The approach is simple mathemat-
ically and efficient computationally, yet sufficiently accurate in
the prediction of the SOM performance. Restriction of Volterra
series mentioned above will be resolved. The proposed ap-
proach is an adaptation of the analysis proposed by Cheng and
Everard [11] for the free-running oscillator. Phase relationship
among signals and stability criterion are not required for the
numerical analysis. It must be stressed at this point that the
purpose of this paper is to present a new simulation approach
for this class of problem and not to design a SOM with optimal
conversion gain.

II. THEORY

As in [11], the circuit under analysis is first converted into
a one-port network by making a break in the circuit, as shown
in Fig. 1(a). Zin, the input impedance looking into that port
is expected to be zero for all frequencies under steady state
condition. To determine Zyy, a current source with an assumed
frequency, wy is attached to the port, as shown in Fig. 1(b).
This current source has an ideal frequency-dependent source
impedance, Zg connected in parallel.”Zg assumes an infinite
value (open circuit) at the excitation frequency, wg but zero
value (short circuit) at all other frequencies (RF, harmonics of
RF and oscillating signals, and mixed products).

With a small current excitation, Zyy is the small-signal input
impedance and is expected to have negative resistance over
a band of frequencies. As the current level increases, Zin
is expected to change due to the presence of nonlinearities.
Indeed, Z1y is a function of the oscillating signal frequency,
RF frequency and power level, and current level of the ideal
current source. Under steady state condition, the voltage across
the break point will be zero as required and the driving
current is the actual current flowing through that circuit path.
Thus, with the frequency-dependent Zg, the SOM analysis
is conveniently reduced to a problem dealing only with the
oscillating signal.

The SOM problem can be sub-divided into two separate
states: 1) idle state, and 2) mixing state. The idle state
represents the' condition of the SOM without the presence
of RF signal while the mixing state represents that with the
presence of a RF signal.

0018-9480/96$05.00 © 1996 IEEE
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Fig. 1. Conversion of a circuit to a one-port network

A. Idle Stuate

Without the presence of the RF, the nonlinear impedance
can be represented by Volterra series as

Zn(wo. Jo)
= Zl(u}o) + 0.7523(&)07 ~w0ﬂw0)|I0|2
+ 0.625Z5(wo. —wo.wo, —wo,wo) [ To[* + -+ (1)

where 71,75, and Zs are the first-, third- and fifth-order
impedance transfer functions. These functions represent the
various orders V-1 relationship at that artificially created port,
due to the power-series type nonlinearities. One point to note
is that Z is the small-signal impedance and is expected to
be negative over a range of frequencies. Thus, the problem
is reduced to that of varying I and wy to match Zy to a
short-circuit impedance.

B. Mixing Siate

In the presence of RF, the nonlinear impedance can be
represented by Volterra series as

Zin(wo. Lg)
= Z1g(wo) + 0.75 7235 (wo. —wy, wo)|Lo|*
+ 0.75Zs g (w5, —wie.wo) | Tt ]
+0.625Z5(wo, —wo, wo, —wo, wo) | lo[*
+ 0.625Z5 1 (et —wet« Wete —wrts Wo )| Le|*
+ 0.625Z5 5 (wet. —wye. wo. —wo.wo) | Lee|*| o> 4+ (2)
where I ¢ is the RF current calculated from the available power

equation for a given RF signal power. The available power
equation is given as

1
P = gIIQfR (3)

where I? is the terminating resistance. This allows any
impedance mismatch to be considered in the analysis. The

transfer function in (2) is two-tone in nature with the presence
of RF signal. They represent not only the various order of the
nonlinear input impedances but also the nonlinear coupling
impedances at the various ports for all desired frequencies.
Looking at (1) and (2) show that only the magnitudes of
It and [y are required. There is a certain phase relationship
between the RF and oscillating signals [12]. However. given
the way this problem is formulated. no such information is
required.

Once converges. the obtained value of Iy and wy are used
to calculate the IF voltage, Vi¢ across the load. Vir can then
be represented as

Vie(wo, To. Irr)
= [0.5Z23(w0, —wit) + 0.75Z4R(w0, —Wwp. Wo, —wrf)ifo|2
-+ 0.75Z4R<C/Jrf. ~Wef, WO, _er)ljrfl2 + - ]IO :f' 4)

It can be seen in (4) that for the calculation of the IF power
level, the phase relationship between Iy and [ is also not
required. It can also be shown that the phase relationship is
not required for the calculation of the image and harmonic
signals too. Since the phase relationships amongst the signals
are not required, real-valued currents are used 1n this analysis
for simplification.

IITI. NUMERICAL IMPLEMENTATION

The algorithm adopted here is similar to that proposed in
[11]. The algorithm involves varying two real-valued param-
eters, Iy and wy in the search for Ziy = 0. The steps of the
algorithm are defined as follows:

1) Set k = 0 (where k is the iteration number) with Ig =1
pA and wf approximately equal to that of the oscillation
frequency derived from linear circuit analysis;

2) vary wg until |ln[Zin(we, Lo)]] < €, a pre-determined
tolerance;

3) with ngH obtained in step 2), a new Igj‘“ is calculated
using the following (5) or (6). depending on the state of
the SOM under consideration:

Idle State:
1
= —Re[Zl(UJ()) + 062525
x (wp, =wp, wo. —wo,wo )| To|* + -]/
Re0.75Z3(wq, —wo,wp)] (5)
Mixing State:
[+
= —Re[Zir(wo) + 0.75Z3r (wrt, —wer, wo )| Lot |?
+ 0.625Z5r(wo. —wg, Wo, —wo-. (,c)())|[0|4
+ 0.625Z5 (W, —wrt, Wt —wor, wo) | Lot
+ 0.625Z5 p(wr. —wrt, wo, —Wo, Wo)
x| Le*[ o> + -1/
R&‘[O.TSZgB(u}(),Hw(),wO)]. (6)
Since the Im[Zx] is zero at w) ™, as enforced in step
2, (1) or (2) are real-valued. Thus, (5) and (6) are
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Fig. 2. Schematic diagram of the SOM.

derived by setting Re[Z1n] of (1) and (2), respectively,
to zero and manipulating the real part of the (5) and
(6) provides an update of I which attempts to cause
Re[Zin] = 0 given wi™l. However, this update can
upset the condition Im[Zy] = 0 and further iteration is
needed.

4) A further update of I is made as follows

M =plt 4+ (1-p)If where0<p< 1

5) go to step 2) until
| Zin(wE Tt Ig)| < 7, a predetermined tolerance;

6) compute all the output power level of desired frequen-
cies.

The search subroutine in step 2) is taken from IMSL. A value
of 2.5 is used for p in step 4). The transfer functions are
derived using nonlinear current method [13]. This method is
suitable for CAD applications and allows calculation of higher
order transfer functions. A program capable of generating up to
the seventh order transfer function has been developed. This
allows strong nonlinearities to be represented using Volterra
series. Details of this method will not be presented here as
[14] provides a detailed discussion on this topic. The program
also handles both states automatically. Since Zin is only a
function of two variables, global convergence is not an issue.
As in [11], the initial guess of the oscillating frequency is the
resonant frequency approximated from linear analysis.

IV. MODELING AND DESIGN OF SOM

To verify the approach proposed above, a simple oscilla-
tor/mixer circuit, as shown in Fig. 2, is used. The whole circuit
is fabricated on Duroid substrate with €, = 2.33 and thickness
20 mils. The FET used in this circuit is a NEC71083. A
LC series combination is used as a parallel feedback network
across the gate and drain to provide negative resistance at
about 6 GHz. A low ) quarter-wavelength transformer at 4
GHz is connected at the drain to provide proper matching
impedance. In the analysis, the transformer is treated as ideal
transmission line. HP11612A external bias network are used
at each port to provide broadband biasing.

The FET is represented by an equivalent circuit as shown
in Fig. 3. Package parasitics are included in the gate and
drain. The value of the linear elements are derived through
optimization using S-parameters of the FET biased at Vg, =
3 V and Iy = 30 mA, over the 2-18 GHz frequency
range obtained from catalog. TOUCHSTONE is used for

lpkg Ry Lg Cag Ld Rg Lpkd
G 11 D
* l L] J-
C <
- “gs L l
Cokg L < Cds Cpkd
il R @ om (Vgs) Rds-l- J
Rs
LS
S
Fig. 3. Equivalent circuit of the MESFET.

TABLE I
OPTIMIZED VALUES OF THE EQUIVALENT CIRCUIT PARAMETERS

OPTIMISED VALUE OF THE
EQUIVALENT CIRCUIT PARAMETERS
BIASED AT Vdg =3 V and Ids = 30 mA

Rg Q) 02T
Rs () 0.29
Rd (&) 1.52
Ri ) 2.16
Rds () 251
Lg (ntl) 034
Ls (nD) 0.12
Ld (i) 0.47
Cgd (0F) 0.04
Cds (OF) 0.09
Cas (OF) 0.39

C;)-kg(pF) 021

Cpkd (pF) 0.25

Lpkg (nH) 0.16

Lpkd (nH) 0.19

this optimization step. The optimized values are tabulated in
Table 1. Since these linear elements do not vary significantly
with bias, the obtained values are good for other bias condition
close to that of Vi = 3 V and I3, = 30 mA.

Here, the two dominant nonlinearities, transconductance and
gate diode characteristic, are considered. The nonlinearities of
Cgs and Cys are not considered. To simplify the problem,
the effect of the drain voltage on the drain current is not
considered, reducing the relationship to a one-dimensional
polynomial. The DC I-V characteristics of the FET is measured
on a HP4145A Semiconductor Parameter Analyzer. The load
impedance looking out from the drain at the small-signal
oscillating frequency is determined using the small-signal
equivalent circuit of the FET. The calculated load is then
used to generate a load-line, which is superimposed on the
I-V characteristics. Variation of I; with respect to Vg is
then extracted and expanded into a power series about the
desired DC bias point. As a compromise between oscillation
and mixing conditions, the FET is biased at Vg = 3 V and
Iss = 25 mA. The generated power series for Iy is then

Tos = 61.61 Vg +33.23 V2
—19.96 V2 — 14.62 V4 — 0.68 V. ©)

where Vg is in volts and I4s is in mA.
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Fig. 4. Measurement setup

The gate-diode conduction characteristic is also measured
on HP4145A with the drain open-circuited. The diode current
is assumed to be that of an ideal Schottky diode and can be
represented as

Le = Lyeo(e®Ve —1). (8)

A parameter fit is made to match the measured data to the
above equation with I,s0 and ¢ being the unknowns. With
fitted values of I and o, (8) is expanded as a Taylor series
about the gate bias voltage and the derived polynomial is

Tgo = 2.04 Vg + 425 V2 +5.89 V) +6.13 V2
+5.10 V2 +353 VE+ - ©

where 15, is in volts and I, in mA.

V. RESULTS

The measurement setup for the circuit is shown in Fig. 4. A
1.0-12.4 GHz coupler with 16 dB coupling is used to provide
proper termination over the wide range of frequencies (RF, IF.
and oscillating signals). The coupler also allows signals at the
gate port to be measured. The output is then observed on a
HP8562A Spectrum Analyzer, which has a frequency counter
option. Attenuators are included to ensure proper termination.
Calibration is made with a HP437B Power Meter at all relevant
frequencies to account for the error in the spectrum analyzer,
and cable and coupler insertion losses.

The SOM circuit 1s biased at Vg, = 3 V and [y, = 23.58
mA. Initially, the SOM is left in the idle state. The measured
frequency and power level of the oscillating signal and its
associated second harmonic are shown in Table II. Theoretical
prediction using Volterra series up to the fifth-order is also
included for comparison. Calculation using seventh order
transfer function shows no significant improvement in the
results, indicating that convergence has been achieved. Fifth
order is used so as to reduce the CPU time. The measured
results show good agreement with that calculated. There is
some discrepancy in the second harmonic power level. As
observed in [11], this is because the nonlinearity of Cgs is not
taken into account.

Next, the SOM under mixing state is measured. A HP8350B
generator is used to provide the RF signal. The RF signal
power level at reference plane A indicated at Fig. 2 is first
measured with HP347B to obtain the available power level.
(3) is then used to calculate the I.s. Measurements made at
the gate port show that the performance of the SOM is poorer

TABLE 1I
MEASURED AND CALCULATED PERFORMANCE OF THE SOM IN IDLE STATE
CALCULATED §| MEASURED
FUNDAMENTAL
OSCILLATION 5.901 5.894
FREQUENCY (GHz)
FUNDAMENTAL SIGNAL 12.7 134
POWER LEVEL (dBm)
SECOND HARMONIC -10.6 -6.6
POWER LEVEL (dBm)
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Fig. 5. Measured and calculated conversion loss/gain of the SOM with
respect to RF frequency.

compared to that at the drain. Thus, only measured results at
the drain will be reported.

The conversion loss/gain of the SOM 1is first measured with
a RF frequency sweep between 5.0 and 5.5 GHz with a step
of 0.05 GHz. The conversion loss is calculated with reference
to the available RF power. The input RF available power
level is set to —18 dBm at reference plane A in Fig. 1(b).
The measured and calculated conversion loss/gain is shown
in Fig. 5. Again, fifth order Volterra series is used to save
CPU time. The agreement is better than 1 dB over most of
the frequency band. The discrepancy is greater when the RF
frequency is closer to that of the oscillating frequency. This
is because in the neighborhood of the oscillating frequency.
there is negative resistance. This provides some form of
amplification for the RF signal. Thus, the system becomes
strongly nonlinear as there are two strong signals present.

As the mixing process takes place, it is expected that the
oscillating signal power level to be lowered due to the con-
servation of power. Also, some frequency pulling is expected.
Figs. 6 and 7 show respectively the variation of oscillating
signal power and frequency shift with respect to the RF
frequency variation. Frequency shift is taken relative to the
oscillating frequency i the idle state. The discrepancy in
the power variation between measured and that calculated
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Fig. 6. Measured and calculated oscillating power of the SOM with respect
to RF frequency.
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Fig 7. Measured and calculated oscillating frequency shift of the SOM with
respect to RF frequency.

is within 2 dB. However, there is some discrepancy in the
frequency drift as the RF frequency approaches that of the
oscillating frequency. Again, this is due to the fact that the
system is now highly nonlinear. But, the theory does predict
correctly the trend of variation.

Lastly, the SOM is measured with a RF signal at 5.3 GHz.
The RF available power is varied between —18 dBm to —8
dBm in step of 1 dBm. The measured variation of conversion
loss/gain and oscillating frequency shift with respect to RF
power are shown in Figs. 8 and 9 respectively. The theoretical
results are also in good agreement with measurement up to
a RF power of about —12 dBm. This is because as the RF
power increases, the system becomes highly nonlinear and
other nonlinearities are now expected to have significant effect
on the mixing process. However, the theory does predict the
trend of saturation well in the conversion loss/gain.

VI. CONCLUSION

A new approach to the problem of self-oscillating mixer has
been made using Volterra series. The advantage of this method
is that the phase relationship between the RF and oscillating
signals is not required in the formulation of the problem. Also,
the stability criterion is not needed for convergence test to
a correct solution numerically. Nonlinear current method is
used to generate the kernels, resulting in its ability to generate
higher-order kernels. This means that strong nomnlinearities
can be represented and that the approach is compatible to
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Fig. 8. Measured and calculated converston loss/gain of the SOM with
respect to RF power.
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Fig. 9. Measured and calculated oscillating frequency shift of the SOM with
respect to RF power.

CAD. Convergence is ensured as the initial guess is derived
from small-signal analysis. Although the FET equivalent cir-
cuit used here is simple, the theoretical results are in good
agreement with that measured with RF frequency and power
sweeps. This approach is not restricted to this FET model and
more complete nonlinear equivalent circuit can be used.
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